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Abstract – This work attempts to shed light to the
fundamental concepts behind the stability of Multi-Agent
Systems. We view the system as a discrete time Markov
chain with a potentially unknown transitional probability
distribution. The system will be considered to be stable
when its state has converged to an equilibrium distribu-
tion. Faced with the non-trivial task of establishing the
convergence to such a distribution, we propose a hypoth-
esis testing approach according to which we test whether
the convergence of a particular system metric has oc-
curred. We describe some artificial multi-agent ecosys-
tems that were developed and we present results based
on these systems which confirm that this approach qual-
itatively agrees with our intuition.
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1 Introduction
Multi-agent systems is a growing field mainly because

of the recent development of the Internet as a means
of circulating information, goods and services. Many
researchers have contributed valuable work in the area
in the recent years. However what is still missing is a
clear notion of the stability of multi-agent systems.

The agents of a multi-agent system are computer pro-
grams in a distributed environment that execute tasks
on behalf of their human owners. These tasks often in-
volve decision-making. Stability, understood intuitively
as the property of a system that exhibits bounded be-
haviour is perhaps the most desired feature in the sys-
tems we design. It is important for us to be able to
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predict the response of a multi-agent system to various
environmental conditions prior to its actual deployment.
This is why we believe that a clear mathematical defi-
nition of the concept will allow us to develop tools and
methods for its analysis.

2 Background
Computer scientists often talk [5, 9] about stable or

unstable systems without having a verifiable definition
of stability. On the other hand, control engineers have
a very well established definition [6], which however, is
not suitable for multi-agent systems. This is mainly
because the agents have to make decisions which is dif-
ferent than changing the values of variables, performing
arithmetical operations or differentiation and integra-
tion. Similarly the widely accepted notion of stability,
which comes from the field of dynamical systems [8, 4],
is not appropriate for multi-agent systems either. This
is because this definition is restricted for closed systems.
Agents, as they act on behalf of humans, are not isolated
from the real world. They constantly have to deal with
new concepts and changing input. Similarly the defini-
tion of stability in the context of population dynamics is
not adequate [10]. In this field the research concentrates
on grouping agents into types and studying how popu-
lations of different types evolve by looking at the size
of the population. However, the agents may not always
fall into classes, as they are independent individuals.

We propose that considering agents as utility max-
imising players who take decisions in a game, instead of
computer programs, would be a more appropriate ap-
proach that concentrates on the actions of the agents
rather than implementation issues. In addition we want
to account for systems that are as close to reality as pos-
sible. In order to do this we have to cater for systems
with a varying number of agents. This is the reason we
work with ecosystems of agents. In an ecosystem, new
agents can appear and existing agents can vanish.

In this work we propose a definition of stability for
multi-agent systems based on the stationary distribu-
tion of a stochastic system. We provide simple example
systems to illustrate this.



3 Markov Chains Primer
This section presents a brief and by no means exhaus-

tive introduction to the theory of Markov Chains which
underlies the approach taken in this work to defining
stability. More comprehensive introductions to Markov
Chain theory and stochastic processes in general are
available in [7] and [1].

Definition: We say that (Xn)n≥0 is a Markov chain
with initial distribution λ = (λi : i ∈ I) and transition
matrix P = (pij : i, j ∈ I) if:

1. Pr(X0 = i0) = λi0

2. Pr(Xn+1 = in+1 | X0 = i0 . . . Xn = in) = pinin+1

The crucial point is that a Markov process is mem-
oryless, which means that the current state of the sys-
tem is the only state that is required to describe its
subsequent behaviour. We say that a Markov pro-
cess X1, X2, · · · , Xm has a stationary distribution if the
probability distribution of Xm becomes independent of
time (m).

We view a multi-agent system as a countable set
of states I with implicitly defined transitions between
them. At time n the state of the system is the random
variable Xn.

3.1 Definition of stability

A system considered under the terms described above
is said to be stable when the distribution of the state of
the system converges into an equilibrium distribution.
In other words when Pr(Xn = j) → πj as n → ∞
∀j ∈ I. Our definition can also be stated by: A stochas-
tic process x1, x2, x3, x4, . . . is stable if, the probability
distribution of xm becomes independent of the time in-
dex m for large m.

3.2 Dealing with a varying number of
agents

We want the definition of stability we propose to ap-
ply to systems with a varying number of agents (ecosys-
tems). The system state will be represented by an infi-
nite vector X that has one or more elements for each
agent and a number of elements to describe general
properties of the system state that are not particular
to any single agent. We model an agent being ‘dead’
by setting the vector elements for that agent to some
predefined value (e.g. -1).

4 Example games
A couple of example-‘toy’ games we dealt with are

given below. We will explain how our definition of sta-
bility applies to them and then investigate how we deal
with more complicated ones.

4.1 The 3-player +/- game

The three players of this game, can each be in one
of two states ‘+’ or ‘-’. If two players are in the same
state the third goes into that state. If all three players
are in the same state, there is probability 0.9 that they
all remain in that state and probability 0.1 that they
all change state. This game has eight states: (1) —,
(2) –+, (3)-+-, (4) +–, (5) +-+, (6) -++, (7) ++-, (8)
+++.

From the rules of the game we devise the state transi-
tion probabilities. For example the probability of going
to state 8 (+++) from state 1 (—) is 0.1, the proba-
bility of remaining in state 8 is 0.9, the probability of
going from state 8 to state 7 (++-) is 1, or the one of
going to state 4 (+–) from state 6 (-++) is 0 and so on.
Thus we construct an 8x8 state transition matrix. It is
shown in Table 1.

State Id 1 2 3 4 5 6 7 8
1 0.9 0 0 0 0 0 0 0.1
2 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 1
8 0.1 0 0 0 0 0 0 0.9

Table 1: The transition matrix for a 3-player +/- game

We often refer to the transition matrix as P . Once we
have this we can check whether an equilibrium distribu-
tion exists or not by solving the following simultaneous
equations for π:

πP = π∑
πi = 1

If one or more solutions exist then the system is stable.
In the case where only one solution exists, this solution
will be the equilibrium distribution into which the sys-
tem will converge. In the case where there exists more
than one solution, this means that the system can con-
verge into one of many stable solutions/distributions of
states. It is uncertain in which one the system will fall,
but as soon as it does it then remains into that one
forever and this why we consider it stable.

In this example we saw how we can devise state tran-
sition probabilities from the rules of a game, which we
formulated from a multi-agent system scenario. These
transition probabilities allowed us to predict whether
the system will eventually reach an equilibrium distri-
bution or not, in other words whether the system is
stable or not.



4.2 The simple random walk

An example of an unstable system is the simple ran-
dom walk, where we start in state 0 and at each time-
step, if we are in state K, we go either to state K +1 or
to state K−1 with equal probabilities. It can be shown
that the distribution of the state Xm, where m is the
time, is centred on zero but its variance is proportional
to
√

m which means that the p.d.f. is not independent
of m.

4.3 A coin game

In another slightly more complicated game, N players
toss a coin in pairs. The loser gives to the winner a unit
of its wealth. Players are destroyed if their wealth is
below 1 and can generate another player if their wealth
is more than 4. The sum of all players’ wealth should
be 6.

If we try out this game with three players we realise
that its state space consists of 19 states. Solving the sys-
tem of simultaneous equations shown above we conclude
that it has an equilibrium distribution. It is remarkable
however; the fact that such a simple game, with so few
players has so many states. The number of states rises
tremendously as we increase the number of players and
adjust the wealth in the system accordingly. For exam-
ple, if we try the same game with four players instead of
three we will be presented with a state space of around
70 states.

At least theoretically one could evaluate the transi-
tion probabilities of the multi-agent system and through
a simple eigenvalue analysis find its equilibrium distri-
bution, if it exists. In practice due to the state space
explosion problem in real multi-agent systems, this ap-
proach is not viable. We therefore propose statistical
analysis as a means of testing for the probabilistic be-
haviour of more complex multi-agent systems.

Multi-agent systems are often used to analyse prob-
lems such as trading in a stock exchange or transporta-
tion problems. This type of situations can easily be for-
mulated as games and their stability can be analysed in
the way we propose. In the next section we show how we
formulated a trading scenario and a loads transportation
scenario as games and comprehensively analysed their
stability. We also present the results we obtained from
extensive simulations and statistical analysis.

5 Experiments
We worked on various different models we developed

in Java, in order to test and experiment with our defi-
nition of stability.

As these models are somewhat more complicated than
the simple games we saw in the previous section we do
not go about finding out the state space of each one
of them. Their state spaces are probably quite large.
What we do instead is to check that several indicative

metrics do reach a stationary distribution after the sys-
tem has been left to run for a while.

5.1 Trading Simulation Model

5.1.1 Scenario

Initial setting There is an array of N different re-
sources in this model. There are M traders each with its
capital, its discounting percentage and its available re-
sources. All traders are endowed with the same amount
of wealth; the amount of each resource given to each
trader is randomly calculated. A discounting percent-
age is used when the trader recalculates its prices. Fi-
nally, the scenario involves tasks that are generated by
agents. A task requires some resources and produces
some others.

At each clock tick every trader with its turn issues a
task and advertises it amongst the other traders. Each
task carries a random combination of required and pro-
duced resources. Every trader gives an offer for the task
(provided that they possess the required resources). The
cheapest offer is selected. If the issuer cannot pay for
any offer then the task is not executed. Otherwise, it
selects an offer and the task is executed. The required
resources are subtracted from the task executor’s set of
resources, the produced resources are added to the is-
suer’s set of resources and the issuer pays to the executor
an amount of money equal to the price for executing the
task. Finally each trader recalculates its prices accord-
ing to its discounting percentage and whether its offer
was accepted or not.

Generation and Destruction of agents When a
trader is sufficiently rich, i.e. its wealth exceeds a cer-
tain threshold; it generates a new trader to which it
gives half its wealth. Also, the parent trader endows
the child trader with half of its resources. The new
trader inherits its generator’s discounting factor. When
a trader’s wealth goes below zero then it is destroyed.

5.1.2 Stability Conditions

In order to consider the system stable, its state must
reach a stationary distribution when it has been left to
run for a while. Strong indications of stability would
be that metrics such as the proportion of traders that
execute tasks, the number of traders, the prices of he
resources, the wealth per trader would all reach station-
ary distributions when the system has been left to run
for a while.

5.1.3 Experiments

In order to explore the entire parameter space we per-
formed an extensive and exhaustive set of experiments,
for as many combinations of initial parameter values and
perturbation sizes as possible. The parameter values
we varied for this model were the discounting factor’s,



prices’ and resources’ order of magnitude and the initial,
generation and destruction wealth for the traders.

An unstable system We performed an experiment
with 50 traders, 10 different types of resources. The
simulation was left running for 104 time ticks. Each
trader is endowed with 106 monetary units and a ran-
dom amount of each of the 10 resources. The amount
from each resource it gets is of the order of 103 (calcu-
lated randomly). The resources’ prices are initially of
the order of 100 monetary units (calculated randomly).
The discounting factor’s initial order of magnitude is
10−3. A trader can generate a new trader if its wealth
exceeds 1.5× 106 and it dies if its wealth goes below 0.

In Fig.1 we show how the ratio Tasks per Trader varies
throughout time. However, the graph is not enough to
demonstrate stability of the system; this is why we used
statistical analysis.
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Figure 1: TRADE UNSTABLE: Tasks per Trader

Our aim was to show that after the system has been
left to run for some time, the metrics mentioned above
reach a stationary distribution. We utilised statistical
hypothesis testing which indicates whether two samples
come from the same distribution to establish if this was
the case. More specifically we used t-test for the equality
of the means and F-test for the equality of the variances.
For in-depth information on these tests one can refer to
any statistics textbook such as [3, 2].

The tests showed that when the model is run with
these initial conditions results in an unstable system.

A stable system If we re-run the above experiment
with the same initial parameters, only changing the dis-
counting factor’s initial order of magnitude from 10−3

to 10−13 and the prices’ initial order of magnitude from
103 to 104 the system’s behaviour is significantly differ-
ent.

We can see from Fig. 2 that the system looks much
more stable than it did before. We performed the hy-
pothesis tests for each metric as described above. We
saw that for all of them there was significant evidence in
the 5% significance level the metrics reached a station-
ary distribution. Therefore the system is stable when
run with those specific initial conditions.

Perturbations It would be interesting to find out
how the system responds when we disturb its normal
running by introducing a perturbation.
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Figure 2: TRADE STABLE: Tasks per Trader

We started an experiment with the same initial condi-
tions as the first one we described (which was unstable).
However, this time we injected a shock into the system.
At time tick 4000, the prices of all the resources of each
trader are increased arbitrarily by 500%. We then al-
lowed the simulation to run until time tick 106 and ob-
served the results. Fig. 3 shows how the ratio of tasks
per trader varies for this experiment.
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Figure 3: TRADE PERT 1: Tasks per Trader (before
and after the shock)

The tasks per trader ratio seems to follow a much
more stable trend after recovering from the shock at
time tick 4000. When we perform statistical testing we
notice that at the 5% significance level there is signifi-
cant evidence that the values for the metric tasks exe-
cuted per trader after the shock come from a common
distribution. In general, the system after the shock is
stable and the effect of the shock is noticeable.

In another experiment the system was started with
the same initial parameters as the stable system shown
above.
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Figure 4: TRADE PERT 2: Tasks per Trader (before
and after the shock)

At time tick 4000 the following shock was injected into
the system. The wealth of each trader was increased by
60%. Fig. 4 shows that the effect of the perturbation
was quite significant. We showed, once more using hy-



pothesis testing at the 5% significance level, that there
is evidence that after the recovery from the perturbation
the values of this metric belong to a common distribu-
tion, i.e. the metric is stable after it recovers from the
shock. In general the system after the substantial effect
of the perturbation has more or less elapsed goes into a
stable phase.

5.2 Loads’ Transportation Model

5.2.1 Scenario

Initial setting We define a number N of cities and
a map of interconnections between these cities. Some
cities are directly connected to each other while some
others are not. The distance between two cities that are
directly connected takes one day to travel. For example,
if the cities A and B are connected via city C (i.e.: A
→ C → B), it takes two days to travel from A to B.
The simulation operates with a granularity of one day.
A number of M lorries travel around the map each of
them being at a city at any particular day. 0 up to M
lorries can be at city at a time. Loads are generated at
a certain rate at each city and have a specific city as a
destination e.g. a load can be generated at city A and
be destined for city B. Each lorry can carry up to K
loads, from which it earns rewards. Rewards are added
to the lorry’s wealth.

Load Allocation and Distribution The loads lo-
cated at a city are allocated to the lorries present at
that city randomly. A lorry has an algorithm which de-
cides the route it will follow based on information such
as the city it currently is in and the destinations of the
loads it carries. Every D number of days the lorries are
required to reduce their wealth by a certain amount.
This is a form of taxation.

Generation and Destruction of Agents When a
lorry’s wealth exceeds a certain threshold, it generates
a new lorry at the city it currently is and endows it with
half its wealth. When a lorry’s wealth is below a certain
threshold then it is destroyed.

5.2.2 Stability Conditions

According to our definition of stability the system will
be considered stable if its metrics show evidence that
they reach a distribution after some time the system
has been running and remain in this distribution for-
ever. The proportion of lorries that carry loads, the
proportion of loads that have been carried, the loads
carried per lorry, the wealth per lorry, the number of
lorries are the metrics we observe to decide on whether
the system is stable or not.

5.2.3 Experiments

An unstable system We performed an experiment
with 100 lorries and a network of 500 cities connected

to each other with a connectivity percentage of 40%
between the cities of the network. The simulation was
left running for 20 000 time ticks. Each lorry is endowed
with 10 monetary units. The maximum capacity of a
lorry is 3 loads. A lorry can generate a new agent if its
wealth exceeds 50 and it is destroyed if its wealth goes
below 0. Tax equal to 2 monetary units is deducted
every 5 time ticks. A new load is generated in each city
every 3 time ticks. The maximum number of loads that
can be waiting in a city at any time is 5.
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Figure 5: LOAD UNSTABLE: Carried Loads Ratio

The graph in Fig. 5 shows how the carried loads ratio
varies with time. Hypothesis testing at the 5% signifi-
cance level showed that there is significant evidence that
the system is unstable when run under those initial con-
ditions.

A stable system In an attempt to make the system
more stable we run it again, performing another exper-
iment. We keep the initial conditions mostly the same
as they were for the previous experiment. However,
this time we change the intercity connectivity percent-
age from 40% to 90%. Fig. 6 shows the behaviour of
the carried loads ratio for this experiment.
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Figure 6: LOAD STABLE: Carried Loads Ratio

The graph depicts a fairly stable system. This is also
the evidence we get when we perform statistical testing
on the metrics ratio of working lorries, carried loads,
loads per lorry, wealth per lorry.

Perturbations In an attempt to challenge the be-
haviour of the system when something unexpected hap-
pens we introduce perturbations. It is interesting to see
what their effect is, if any, and whether it is justifiable.

During this experiment we inject a shock into the sys-
tem. The initial conditions are the same as those for the
previous experiment where the system was stable. This



time, at time tick 4000, we increase the minimum wealth
a lorry has to have in order to be able to generate a new
lorry from 50 to 5 × 107 monetary units, keeping all
other parameters the same.
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Figure 7: LOAD PERT 1: Carried Loads Ratio (before
and after the shock)

This perturbation will naturally cause the frequency
of new lorry generation to decrease. Due to the de-
crease in the number of lorries, there are more jobs for
the remaining lorries to carry out; therefore the work-
ing lorries ratio increases dramatically, as is the wealth
per lorry and the loads per lorry ratio. However, the re-
maining lorries do not seem to be enough to cope with
the number of loads that are generated in the system
therefore the carried loads ratio drops after the shock
occurs.

We know from the previous experiment that the sys-
tem is stable under those specific initial conditions. It
is evident from the graph in Fig. 7 that the system is
driven to instability after the shock is injected. This is
a case where a perturbation causes a stable system to
become unstable. In another experiment we performed
we saw that it is possible the opposite can happen, i.e.
an unstable system can become stable after it has un-
dergone a perturbation.

This simulation was started with the same initial pa-
rameters as the experiment for the unstable system we
showed above. We injected a shock at time tick 4000,
which was to decrease the maximum number of loads in
each city by 80%.
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Figure 8: LOAD PERT 2: Carried Loads Ratio (before
and after the shock)

As there are now less loads in the network of cities,
there are less jobs for the lorries, hence the popula-
tion decreases. Consequently, the remaining lorries have
greater workload. The working lorries ratio increases.
The system seems to work much more efficiently after
the injection of the shock, as the carried loads ratio is

boosted from 15% to 30%. In addition to all these,
hypothesis testing confirms that after the system has
recovered from the shock the metrics we examine fall in
stationary distributions. Therefore, we can deduce that
there is significant evidence that after a small transient
phase the system is stable.

6 Conclusion
This has been a study of the concept of stability of

ecosystems. We began by evaluating definitions of sta-
bility that already existed in well-established fields of
mathematics. We then explained the reasons these defi-
nitions are not suitable for application in the context of
multi-agent systems and ecosystems. Subsequently, we
proposed a definition of stability which is the only one
which takes into account the game nature of multi-agent
systems, is relevant to systems with a varying number of
agents and is supported by the mathematical framework
of stochastic systems.

The study included the design and development of
experimental multi-agent platforms which we analysed,
with the intention of illustrating the validity of our def-
inition. Moreover, we introduced statistical hypothesis
testing as a means of applying our definition analyti-
cally to quantify the stability of complex multi-agent
systems.
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