
A Model for Agent Mobility and Interaction 
Pedro Mariano', Mario Marquest ,  Luis Correia', Ri ta  Riheiro', 

Vladimir Abramov, Jan Goosenaerts, 
Maria Chli ,  Philippe D e  Wilde 

*Informatics Department, New University of Lisbon, Portugal 
Email: plm@di.fct.unl.pt, 1cQdi.fct.unl.pt 

IUNINOVA, New University of Lisbon, Portugal 
Email: mjsmarques@netcabo.pt, rar@uninova.pt 

Abslrocf- As information infrastructures move towards 
open systems where agents come and go, new facilities 
are required so that these agents can take advantage of 
each others functionalities. We need agent systems that 
can provide to newcomer agene a place and the right 
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C N  = {(v;,nf],. ..) 
cs = { ( 7 2 , S < ] ,  .. .} 

agent to interact with. Such functionality must cope with 
high rate of agent entrance, with high load of agents, with 

TABLE II 
SOME AGENT PROPERTIES. vanishing agents or nodes in the agent system. Given these 

requirements, agents are constantly facing a problem of 
deciding where to go and with whom to work with. These 
two decisions, pertaining to mobility and interaction, have 
been singled out as fundamental of even aeent svstem. We B. Aaents I . "  . " 
present an algorithm targeted at these two decisions while 
it fulfils the aforementioned requirements. In the model we present. agents are characterised by 

a set of conceots they can produce and another set of 
1. INTRODUCTION 

The model that we developed, inspired by natural im- 
mune systems [I ] ,  is targeted at the problems of mobility 
and interaction in a distributed multi-agent system. It aims 
at providing a solution to the problem of deciding with 
whom to work on a goal and where to go. The model was 
developed for a particular class of agent systems where 
agents can be classified as producers and consumers. We 
assume that: agent systems are composed of agents and 
network nodes; agents can travel through network nodes; 
agents interact inside a network node. 

11. DEFINITIONS 

A. Agent Sysrem 
As we have already said, there are agents and network 

nodes. Agents have unique identifications, taken from a 
subject space (SI. We will use the word subject as agent 
identity. Network nodes have unique addresses. taken 
from a network space (N). We will use the word node 
whenever we refer to a network node. Agents' goals are 
described using terms from a conceptual space (C). We 
will use the word concept as a description of an agent's 
goal. A concept corresponds to a resource. See table 1 for 
a definition of these terms. 

subject s t  
subject space S = {JIJZ,.  .. s i , . .  .} 

TABLE I 
S O M E  GLOSSARY TERMS USED IN THIS PAPER.  

concepts that they can consume. These sets may he empty. 
The union of the two sets forms the agent's specialisation. 
When required, we will use the superscript to identify 
a concept that one agent produces, and we will use 
the superscript to identify a concept that one agent 
consumes. On a single instant of time, an agent's goal 
description is a concept from the specialisation set. 

During their lifetime agents collect information about 
their movements and interactions. For each interaction, an 
agent records the node where it occurred, the other agent's 
goal, and the other agent's identity. This information is 
stored in three maps: concept-subject, concept-node, and 
subject-node. These three maps form the agent's experi- 
ence. In addition to exchanging the previous information, 
agents can share part of their experience. See table I1 for 
an overview of these agent's characteristics. 

The agent behaviour is modelled by a finite state 
automaton with four states: agent does nothing; agent 
travels between network nodes; agent wants to talk with 
somebody else: or agent wants to accomplish its goal by 
working with another agent. Agent interactions (talk and 
work) are limited to two agents. One agent needs a second 
agent to achieve its goals. If the description of their goals 
match (one agent consumes the resource that the other 
produces), both accomplish their goals. 

Function i defines the goal matching function for any 
two concepts r g  and .E2. The and U values are the 
aforementioned superscripts, and c. 

Agents can have a goal quality measure that could he 
used to distinguish between good and had ones. After an 
agent reached its goal, it may start over and accomplish 
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another one. or leave the agent system. The description 
of the new goal is taken from its specialisation set. 

111. IMMUNE SYSTEMS 
The model is targeted at the decisions of selecting a 

destination network node and an agent to interact with. It 
is inspired by natural immune systems [I] ,  [Z]. 

The main functions of immune systems are recognition 
and categorisation [4]. These are some of the functions 
that components of agent systems must perform. Agents 
must recognise, categorise and rank partners; they must 
be able to recognise the concepts they deal with. Agents 
also travel, therefore they need to select where to go. To 
sum up, we need to recognise and categorise agents and 
network nodes. We will now describe how this can be 
performed. 

Given the definitions presented in section 11, agents 
need to single out other agents related to the description of 
their goal, which implies selecting an agent and selecting 
a node. These two decisions depend on information stored 
on the concept-subject map and concept-node map. These 
maps basically say: choose this agent because of that 
concept and go to this node because there are agents that 
know that concept. 

The metaphor of self and non-self can now be read- 
ily applied as follows: self-cells and non-self cells are 
concept-dependent: self-cells indicate agents one should 
choose or nodes one should go to; conversely, non-self 
cells indicate agents one should not choose or nodes one 
should not go to. After each agent accomplishes its goal, 
a measure of the outcome can be used to update the 
proportion of self and noti-self cells. In the ncxt section, 
we discuss some measures that can be used to control this 
proportion. 

IV. T H E M O D E L  

A. Algorithm Outline 
Each agent locally runs the algorithm using as inputs its 

goal and the three maps. The algorithm ranks nodes and 
agents according to some criteria. It produces as output 
the node, n*, with the highest value, ~ ( n j ) .  and the agent, 
s*, with the highest value, .(si). 

The best candidate node to travel to is the one known 
to have more agents related to the first agent’s goal. 
Conversely, the hest agent to work with is the one known 
to have more concepts related to the first agent’s goal. 

The network node value, u(n,), is calculated as fol- 
lows: 

u(nj )  = match(TZ,gy) (2) 
(r;,nj) E C N  

where the superscripts and can take any of the two 
values and c, and the function match is defined in 1. 

Example - Node choice Suppose that agent John has 
the following concept-node map: 

CN ={(drilp, 1.2.3), (drillp, 1.2.3), 
(screwdrivef 2.4.6), (dri lp ,  3.3.3)} 

and its goal is g’ = drillp. Network nodes values are as 
follows: u(1.2.3) = I. u(2.4.6) = 0, and u(3.3.3) = I. 

Host 2.4.6 has zero value because it is known not to have 
the concept the agent is looking for. Host 3.3.3 has a value 
of one because it is known to have one instance of the 
concept. Host 1.2.3 while known to have two instances 
of the concept the agent is looking for, only one of them 
comes from a consumer, therefore it has a value of one. 

The agent value can be calculated on a network node 
basis or disregarding the agent’s location. Since agents 
first select a node and then an agent, agent values should 
be calculated on a node basis. Given a selected node, n*, 
the agent value, %(se). is calculated as follows: 

zc(s;) = match(rt,g’) (3) 
(T; , S i )  E cs 
(si;n*) E SN 

Example - Agent choice Suppose now that agent John 
has selected node n* to travel to and the relevant tuples 
from the concept-subject map, that is to say, the tuples 
(rk,s;) such that (si,n*) E S N ,  are: 

{ (d r i lp ,  Maria), ( d r i f f ,  Anna), 

(hammerc, Peter)} C CS 

and its goal is g’ = drillp. From the above we compute 
agent values are as follows: u(Maria) = I, %(Anna) = 0, 
and u(Peter) = 0. Agent Peter has zero value because it 
is known not to have the concept the agent is looking for. 
Agent Anna while known to have the concept the agent 
is looking for, she is a producer, therefore her value is 
zero. Agent Mm’a has a value of one because she is a 
consumer of the product agent John produces. m 
B. Biased AIRorifhm 

The previous algorithm does not take into account 
any goal quality. Agents may measure how satisfied they 
become after achieving their goal. Generally, producers 
and consumers will have different measures. In [51, the 
author considers how agents can rate each others’ goals. 
Three measures were proposed: quality, cost, and dura- 
tion. We will briefly discuss how they can be used in our 
framework. 

Quality - How good is the concept produced or 
consumed (it may have different meanings whether 
the agent is a producer or a consumer). . Cost - How much did it cost to achieve the goal. 
Producers may have to pay a production cost but 
may receive some money whenever a consumer gets 
a resource. Likewise, consumers may have lo pay to 
obtain the resource. Other costs, rather than resource 
price, may be taken into account. 
Duration - How much time did the agent take to 
achieve the goal. 

Independently of the used measure, it is advantageous 
that a high value (meaning good quality) should increase 
the corresponding node value and agent value. Since 
agent and node values depend on the number of tuples 
(see.equations 2 and 3). a goal that results in a high 
value should increase the number of (g’,s*) and (g’,n*) 
tuples, while a low value should decrease the number of 
tuples. 
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Let us define UG as the value that an agent gets from 
accomplishing a goal. The reference value, UO. is a fair 
value, in that it maintains the number of tuples. The 
changes to the number of tuples in the concept-subject 
map and concept-node map are given by, respectively, 
expressions 4 and 5 .  

A#(s~,..) = round(w. . (UG - UO)) (4) 

A#(p,n*)  = rmnd(wn . (W - uo)) ( 5 )  

Constants wa and wn are weights that control the 
amplitude of the change: a high value results in a higher 
change to the number of tuples, while a low value results 
in a small change to the number of tuples. 

The metaphor of immune system can he easily estab- 
lished with this version of the algorithm. The previous 
equations (4 and 5 )  provide a way to increase or to 
decrease the number of tuples which in turn will affect 
who is selected to travel to and to he talked with. This 
change (in the number of tuples) is similar to the Clonal 
Selection algorithm [ I ] .  

C. Experience maps managemenr 
The algorithms we presented use the information stored 

in the experience maps. The last algorithm modifies the 
contents of these maps. The agent's behaviour generates 
more information to put into these maps. However, these 
maps cannot grow forever. Each map has a maximum size. 
Whenever new information must be put into a map, that 
does not have enough space, random tuples are selected 
to make up the space for the new tuples. 

We could attach time stamps to tuples and remove the 
oldest. This is subject to future work, but for the time 
being, random removal is sufficient as the most common 
tuples are always selected. In conjunction with the second 
algorithm this mechanism keeps the tuples that result in 
higher value goals. 

Suppose that map CS has I tuple (drilF,Anna) and 
n - 1 tuples (drilP,Maria). The agent's goal is gY = 
dr i lp .  Agent Maria is chosen to talk to, since it has a 
higher value. Since the map CS is full, one tuple is chosen 
to make up space. If it is any of the tuples (drilp,  Maria). 
agent Maria will still he chosen the next time the agent 
has the same goal. If it is the tuple (drilP,Anna),  again 
agent Maria will be chosen. The probability that the 
tuple (dr i f f ,Anna)  is present in the CS map after m 
interactions is ( n  - 1)'"/nm. 

V. RESULTS 
A .  Mobile Agem Model 

The results mentioned in this work use a framework 
with static agents and mobile agents. Static agents dis- 
patch mobile agents that perform the role of information 
gathering, and then use this information to select a 
network node to go and an agent to work with. Mobile 
agents' parameters are composed of a set of nodes to 
visit and a deadline. During each visit to a network 
node. mobile agents will try to talk to all agents (at the 
node) and collect information to store in their experience 
maps. Whenever these experience maps get full. or all the 

nodes have been visited or the deadline has been reached, 
mobile agents will return to their respective Static agent 
and deliver the information they collected. Mobile agents' 
parameters are generated by an evolutionary algorithm 
using the sum of expressions 2 and 3 as a fitness measure. 

B. Scenarios 
The scenario used was a trading system with buyers 

and sellers of different products. These two roles were 
performed by the static agents. Buyer agents actively 
selected adequate seller agents. Both sent mobile agents. 
Mobile agents could share between themselves informa- 
tion they collected. Since only buyers selected sellers, 
mobile agents sent by sellers work only as promoting 
agents. Mobile agents sent by buyers gather information 
that is used by the respective buyer in the agent decision 
process. Whenever one seller and one buyer traded on a 
product, we considered that both have accomplished their 
goal. After this, they received a new goal. This new goal 
is taken from their respective specialisations. 

To assess our model, we performed a set of control 
simulations where agent selection (to work on a goal) 
was done randomly. Static agents still launched mobile 
agents to collect information, but instead of selecting the 
node with the highest measure, they selected one node 
randomly from the set of known network nodes. 

Some measures were taken in order to compare the two 
models: . solved tasks - this is a counter on how much goals 

an agent has achieved. We measured it for all agents 
in the agent system. . average task solving time - an average of agent 
lifetime (in simulation steps) divided by number of 
accomplished tasks. 

We ran the simulation for T = 1000 time units. We 
varied the number of different resources in the agent 
system from 1 to 3. The number of static agents was 
100, and the number of nodes was IO. Static agents only 
traded at most one product per simulation time unit. We 
also tested our algorithm in face of some types of failures. 
In one configuration there was no accident, while in a 
second configuration at T J 2  one third of the static agent 
population was killed (along with their mobile agents). 
The purpose of the first configuration is to compare the 
node and agent selection model against a random choice, 
while the second is to assess how our model behaves 
when an accident occurs. Each simulation configuration 
was run 10 times. The following table shows the different 
configurations tested: 

I node agent selection I our model 
1 random 
1 1,  2, 3 
1 A - no accident 

number resources 
accident I B - kill 1/3 agents at T/2  I 

C. Comments 
In the configuration A (no accident), agents with our 

model accomplished more goals than agents with the 
random choice model. However, the difference is not 
significant. Whereas in the configuration accident = B 
there is a clear difference between the two types of agents. 
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Fig. I. This plot shows the number of accomplished goals versus time 
with 2 pmducrs. Each line is an average of 10 simulation mns (all of  
them with [he rame setting). At t = 500 one ihird of a l l  static agents 
was killed. 

Agents that make random choices, regarding the node 
where they will go to, complete less tasks than agents that 
go to the node with highest rating. In most cases, there is 
no difference. For inslance, i n  the case of 2 products, the 
two plots match each other. The behaviour is the same in 
both scenarios. 
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resources. Such agents live in an agent system composed 
of network nodes where agents move around. Results have 
shown that our model improved agents' accomplishing 
capabilities, while providing robustness to different types 
of accidents and conditions. 

We have used a trading model that is discussed else- 
where [61. In order to assess our model for agent mobility 
and interaction, we could have abstract goals. Each agent 
would have a goal solving probability and a goal quality 
measure drawn from a normal distribution. Whenever two 
agents would met together to work, we would compute 
the probability of solving a goal. If one agent could solve 
a goal, we would then compute its quality from the normal 
distribution. 

Scenarios characterised by agents that must interact 
within a distributed information infrastructure, are poten- 
tial candidates for our model. In addition to the trading 
model used, others include information retrieval, and 
transportation. In the first, agents have to search for 
information that is scattered throughout the network. If 
agents are constantly updating the information they own. 
other agents must know who are the agents that hold the 
information they are looking for. The second scenario, is 
similar to the trading scenario, however agents must find 
out other agents that are able to deliver the resources they 

We need to test other types of accidents such as a node 
that disappears along with any agent there located. Such 
assessment aims at testing the adaptability of the agent 
system: if agents are still able to find other partners and 
work together on their tasks. The model agents use to 
select where to go and with whom to work with must 

200 400 600 800 1000 reacl to changes in the agent system: new agents and their 
locations, agents leaving the system, or accidents such 
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Fig. 2. This plor shows the goal accomplishment time versus time with 
2 products. Each line i s  an average of 10 simulation N ~ S  (all oi them 
wirh the same setting). At t = 500 one lhird of all sialic agents was 
killed. 

In order to assess the behaviour of our model, in 
the configuration B (accident), we plotted the average 
goal accomplishment time. Figure 2 shows typical results. 
Again. each line is an average of 10 simulation runs. After 
the accident, agents with our model seemed to behave 
well. They accomplished their goals in less time than 
agents with random choices. 

An agent with our model always goes to a network 
node known to have agents that can help him achieve its 
goals. There is always the possibility thal there is no agent 
in the network node, which in the case of accident B has 
a higher probability of occurring. Compared to a second 
agent with the random node selection, which can go to a 
network node with no agent to work with, the first agent 
will spend less time looking for an agent to work with, 
and thus solves more tasks in less time. 

VI. CONCLUSIONS 

We have presented an algorithm targeted at the fun- 
damental decisions of network node selection and agent 
selection, and we have applied it in a scenario where 
agents must interact and work together to trade different 

as disappearing agents and nodes. While expressions 4 
and 5 were defined when an agent accomplished its goal, 
they can be also used when the agent chose a no longer 
existing node or agent. In this case we could set UQ to 
some minimum value that would guarantee a fast reaction 
of our model. 
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